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EXTENDED ABSTRACT: This talk describes a surface heat flux calibratmethod applicable to
high-speed, aero-thermodynamics based on in-deptiperature measurements. In hypersonic flight,
high surface temperatures and heat fluxes ensusotinthe external portion of the flight vehicle and
within the combustor. These locations require sgzeid materials for thermal protection in the hot
structure. Leading edges and nose tips are ofteipased of composite materials such as carbon-carbon
C-C. On the other hand, combustors may use thdsaraler coatings (TBC’s) such as zirconium oxide,
ZrO,. In both situations, the objective involves praieg and maintaining the integrity of the undertyin
structure. Various material solutions have beepased depending on the flight speed, flight sceneri
and mission objectives. Irrespective of the inteameexternal flow nature, the accurate estimabbthe
surface heat flux (W/f) and/or the total heat transfer (W) are importamtthe purpose of material
evaluation. Both ground and flight tests shouldkeet in mind when designing the predictive tools.
Ground-based testing can involve either short-tondong-time heat flux exposures to the sample. In
short-time experiments, semi-infinite analysis fieo used for estimating surface heat flux as thia-

film resistive temperature gauge and/or co-axiafttocouple [1-5]. In other cases, such as involving
arcjets, full thermal penetration to the back stefaccurs and thus must be accounted [6-9] in the
inverse analysis.

A new calibration methodology is presently undewvelepment at the University of Tennessee,
Knoxville for estimating surface heat fluxes basen in-depth temperature measurements [5,8,9]
applicable to coupon or plug geometries composkdimgle or multi-regions and/or orthotropic
materials. References 5,8,9 describe the calibraténcept in the context of linear analysis forhbat
surface mounted probe [5]; and, an in-depth plageibe [8,9]. Reference 9 presents experimental
verification of the analysis described in Ref. &8ia context of low temperatures.

The next step toward developing a comprehesive uaifted treatment involves extending the approach
to fully nonlinear problems involving a large temgieire variation. Under this condition, constant
thermophysical properties would be an unreasonaédemption to impose. Linear functional equations
provide easy access to the frequency domain thraititer a Laplace or Fourier transform. In the
frequency domain, geometric, thermophysical and@eproperties can be analytically eliminated when
establishing an input-output view to the inversecpss. Lacking this fundamental transform tool for
nonlinear problems requires clever and creativeragmghes that can combine physics and applied
mathematics. The novel framework described irsR&f8,9] require a linear mathematical modelsThi



presentation proposes a new fully nonlinear cdiibnaapproach to inverse heat conduction based on a
series of observations focused on reformulatinghat equation in terms of various combinations of
primitive; and, combined thermophysical propertigsat is, a new mathematical formulation is progose
predicated on a series of observations associaitil expressing the heat euqation in terms of
thermophysical properties. Through these properéepattern emerges suggesting a new calibration
integral equation for inverse heat conduction ia gresence of temperature varying properties. This
extended concept combines the power of linear arsalyith a series of physical observations while
retaining the elegance of the input-output formrawusly described [5,8,9].

In the context of linear theory, sensor characéion, sensor positioning and thermophysical priger
(assumed constant) are implicitly contained indhBbration integral equation that relates the uvim
surface (net) heat flux to the in-depth tempermtmeasurements; and, the calibration surface heat f
Hence, the calibration equation is expressed onlyterms of input-output variables (measured
temperatures and net surface heat fluxes) andcajppdi to both in-depth (sensor placement) and cairfa
(sensor placement) analyses. The resulting Valterregral equation of the first kind contains only
discrete data. Being ill-posed, regularizationeiguired. The present approach is based on a lotakef
information method [5,8,9,10]. The optimal regutation parameter is estimated based on interragatin
the global residuals and their randomness (not eational norms). The conflict between bias and
variance can be exploited for estimating the optiregularization parameter. Consider a semi-itgini
one-dimensional &0) region. Thus, the heat equation for this geoyristgiven by
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while the resulting calibration formulation has beshown to be expressible as [8,9]

[ g O, ot-uxu=[" g OuN,, bf-u)pu, t=C (1e)

where T, is the calibration (measured) temperature at stepth denoted as=l0, @.” is the net surface
heat flux from the calibration run;d; is the measure in-depth temperature of the runcatsa with the
desired predictive heat flux; angl, is the desired net surface heat flux to be predictEquation (le)
assumes J= 0°C or alternatively we can be interpret Eq. (ledeinms of a reduced temperature (J)-T
The identical calibration integral equation reset®n if the spatial region is a slab of width Lthwan
adiabatic back condition or one in which the heanhdfer coefficient does not change between runs.
Equation (1e) does not require the apriori spediibi; of thermophysical properties, probe positigni
nor sensor response time parameters. The key isgueé lies in the accurate estimation of the ndasa
heat flux during the calibration stage.

For the present talk, consider the nonlinear hgaaton in a semi-infinite domain as
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subject to the boundary and initial conditions givxy
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respectively. An important aspect of the preseumyslies in the variation of thermophysical projpes

as a function of temperature. Figures la-d displyous normalized thermophysical properties using
the property average defined as
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where the primitive properties (kgg3) are expressed in terms of an expansion in thra for

AT = A+ AT =T )+ AT T )% +.. @
Here, A represents an arbitrary property; ang,320°C and T,,=800C. Figures 2-5 display alternative
property combinations that are mathematically of#di and assembled through various property
transforms to demonstrate the proposed concepseTinensforms and underlying assumptions will allow
for a property linearization of the heat equati®his observation is the first step toward develgpin
generalized calibration approach for inverse heatlaction.
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Figure 1. Various thermophysical property variations forf@rmal conductivity, (b) specific heat, (c)
thermal diffusivity, and (d) thermal effusivity asunction of temperature for four materials.
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Figure 2: Thermal conductivity transform.
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Figure 4: Thermal diffusivity transform.
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Figure5: Thermal effusivity transform.

With these new property definitions, we can devempseries of linearized heat equations for
investigation. The linearization is especially Hielpvhen the observable variation about the aveiage
small, say+10% (see Figs 1-5). For example, Figs. 2a,b shaivlibith copper and ZgQlisplay such a
feature in the context of the “conductivity transfd. As shown in these figures such cases occur
depending on the property definition. Additionallye can call upon the Kirchhoff transform as a tool
linearization if the thermal diffusivity is relatly constant (see Fig. 1¢c and stainless steel $60T°C).

It should be noted that numerous transforms camprbposed as shortly demonstrated. For example,
consider the therm&onductivity Transform as defined in the following manner by chain rudécalus:

Conductivity Transform:
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The heat equation can alternat|vely be expressed as
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For the moment, consider the situation when

B = pc(T)i—-L_: constant, y, =k(T )3—12 constant

(4d.e)

then
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where Ek—ﬁ. The boundary conditions in the transformed variableecome
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with the transformed initial condition

K(x,0)=K(T,), x= 0. (4i)



This formulation indicates the procedure for prapgsthe combined properties displayed Figures 2-5.
Observe that Eq. (4f) is similar to Eq. (1a); dmehce we can derive a similar calibration equai®given in
Eq. (1e). Table 1 presents a summary of calibraggoations based on Kirchhoff and the various
thermophysical property transforms associated kiigs. 1-4.

Table 1: Summary of calibration equations based on pragserti

Linear Heat Equation (T data) :

[ qOu)(Te bt-u)-T,)du=[ g ©Ou)T,, bt-u)-T,)du, t=0
Kirchhoff Transform/ a(T) = a (T data) :

jutzoq;'(o,u)wc (.t —u)du =jut:0q; QU)W (bt-u)du, t=0

Conductivity Transform (T data) :

[ qu)(k ®t-u)-k.)du=[ g ©Ou)k bt-u)-k,)du, t=0

Capacitance Transform (T data) :

t " t "
fu:oqr (O,u)(c, bt —u)-c,. ) du :L:oqc (Ou)c, (bt-u)-g, )du, t=0
Diffusivity Transform (T data) :

J.utzoq}'(O,u)(ac(b,t—u)—am)du :J‘utzoq; (Ou)(a, bt-u)-a,)du, t= 0

Each property in the defined transform provided'able 1 can be replaced by a series representsion
given in Eq. (4) possessing different but knownffocients. Observe the common functional form proetl
under the assumption as explained in Eq. (4d,ehé&conductivity transform. An infinite numberdafoices
exist. With Table 1 results as a physical guidkealéernative and generalized calibration integrplation to
be proposed is now expressed as

J‘utzoq;'(O,U)(ao +T, (b,t-u)+aT’bt-u)+ "'_Toc)du - (5)

futzoq;(O,u)(ao +T, (b,t-u)+a,I? bt —u)+ ...—Tor)du 12 C

where the unknown coefficientg @,as,....are to be determined through additional catiibn runs.

This talk will present and focus on the following:

*  Concept development for one-dimensional one-preloengtries (Eqg. (1e));

» Elucidation of the implemented local-future timethwal and using residual randomness as the
measure for obtaining the optimal regularizatiorapeeter;

» Presentation of a one-dimensional generalizatidulipnonlinear systems applicable to plugs;

» Presentation of both theoretical and experimeptalits for various cases; and,

» Presentation of the developing and expanding Wsityeof Tennessee, Knoxville experimental
facilities (electrical sandwich heating facilitydtaser testing facility (500w, 0.9n)).
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